久久精品国产AⅤ免费|欧美 女 码 一区二区|国产明星视频愉拍在线|亚洲精品视频三级在线看

    1. 
      

      <cite id="zyqvt"></cite>
      1. <strike id="zyqvt"><table id="zyqvt"></table></strike>
        我要投稿 投訴建議

        《分數(shù)的基本性質》教學設計

        時間:2024-09-23 15:08:28 教學設計 我要投稿

        《分數(shù)的基本性質》教學設計

          作為一名教學工作者,有必要進行細致的教學設計準備工作,借助教學設計可以提高教學質量,收到預期的教學效果。我們應該怎么寫教學設計呢?下面是小編收集整理的《分數(shù)的基本性質》教學設計,希望能夠幫助到大家。

        《分數(shù)的基本性質》教學設計

        《分數(shù)的基本性質》教學設計1

          教學內容:人教版小學數(shù)學第十冊第75頁至78頁。

          教學目標:

          1、分數(shù)是數(shù)學中常見的表示形式,它由分子和分母組成,可以表示部分和整體之間的關系。學生在學習分數(shù)時,需要掌握分數(shù)的基本性質,比如分子和分母可以同時乘以一個非零數(shù),來得到一個等價的分數(shù)。這樣做不會改變分數(shù)的大小,只是改變了分數(shù)的形式。這個性質在簡化分數(shù)、比較分數(shù)大小等問題中非常有用。

          2、培養(yǎng)學生的觀察能力、動手操作能力和分析概括能力等。

          3、讓學生在學習過程中養(yǎng)成互相幫助、團結協(xié)作的良好品德。

          教學準備:

          課件、長方形紙片、彩筆。

          教學過程:

         一、創(chuàng)設情境,憶舊引新

          悟空師徒四人來到一個小國家——算術王國,豬八戒饑腸轆轆,悟空便對他說:“我給你10塊饅頭,平均分2天吃完,怎么樣?”八戒聞言大怒:“太少了,你這猴子欺負我!”悟空瞇起眼睛說:“那我就給你100塊饅頭,平均分20天吃完,可以了吧。”八戒聽后大喜:“太好了!太好了!這下每天我可以多吃點了!”

          同學們,你們認為八戒說得有道理嗎?(沒道理)

          很久很久以前,在一個神秘的森林里,一只小松鼠和一只小松鼠精靈相遇了。小松鼠問道:“你是誰?為什么看起來和我這么像?”小松鼠精靈神秘地笑著說:“或許我們有著某種特殊的聯(lián)系,但這個謎團需要我們一起去解開……”

          為什么?用你們的數(shù)學知識幫他解決一下吧。(學生立式計算)

          先算出商,再觀察,你發(fā)現(xiàn)了什么?

          被除數(shù)和除數(shù)同時擴大(或縮。┫嗤谋稊(shù),商不變。

          同學們,再想一想除法與分數(shù)有什么關系,并完成這些練習吧。

          8÷15=? 3÷20=?? 14÷27=

          二、動手操作 、導入新課

          同學們對知識掌握的真不錯,為了表揚你們,我決定找三個同學來與我一同分享一個兌現(xiàn)。(拿出準備好的長方形紙片。)

          我們把三張紙片比喻成三塊餅,大家一起比較,每人的三塊餅大小是相同的嗎?請拿出第一塊餅,我想與你每人一塊,確保它們大小一樣,你能做到嗎?你給我的那塊餅為什么是這塊餅的一半呢?用分數(shù)怎么表示呢?

          我想與你每人兩塊,而且大小要一樣大,你又能做到嗎?用分數(shù)怎樣表示呢?

          當我們想要平均分配四塊給你和我時,你覺得這種分配方式可行嗎?用分數(shù)來表示這種分配又是怎樣的呢?這三個分數(shù)的大小是否相等呢?為什么呢?在本節(jié)課中,我們將一起探討這個數(shù)學問題。

          這里是一個小故事:小明手里拿著三根不同長度的繩子,他想知道這三根繩子的長度是否相等。于是,他將三根繩子分別放在桌子上比較。經過比較后,小明發(fā)現(xiàn)這三根繩子看起來似乎長度相等。這讓小明感到很驚訝,他開始思考為什么這三根繩子的長度看起來一樣。這個問題困擾著小明,他決定繼續(xù)探究原因。

          三、探索分數(shù)的基本性質

          你們三次給我的餅大小相等嗎?那么這三個分數(shù)大小怎樣?可以用怎樣的式子表示?

          1、觀察一下這個式子,3個分數(shù)有什么不同?有什么地方相同?分數(shù)的大小為什么會不變呢?要弄清楚這個問題,我們必須先觀察分數(shù)的分子、分母是怎樣變化的。你們能從商不變的規(guī)律,分數(shù)與除法的關系中找出它們的變化規(guī)律嗎?

          2、學生交流、討論并 匯報 ,得出初步分數(shù)的基本性質。

          分數(shù)的分子、分母同時乘以或除以相同的數(shù),分數(shù)的大小不變。

          3、將結論應用到

         。1)先從左往右看, 是怎樣變?yōu)榕c它相等的 的?分母乘2,分子乘2。

          (2)由 到 ,分子、分母又是怎樣變化的? (把平均分的份數(shù)和取的份數(shù)都擴大了4倍。)

         。3)是怎樣變化成與之相等的 的?

          (4)又是怎樣變成 的?(把平均分的份數(shù)和取的份數(shù)都縮小了4倍。)

          4、當兩個數(shù)相乘或相除時,其中一個數(shù)增大,另一個數(shù)減小,結果會更接近前者。不過,不能同時乘或除以0,因為0不能作為除數(shù)。

          5、這就是今天我們所學的“分數(shù)的基本性質”(板書課題,出示“分數(shù)的基本性質”)。學生讀一遍,你認為哪幾個字特別重要?(相同的數(shù)、0除外)相同的數(shù),指一些什么數(shù)?為什么零除外?

          四、知識應用(你知道,阿凡提為什么會笑嗎?他對三兄弟講了哪些話?)

          有一位父親將一塊土地留給了他的三個兒子。大兒子認為這塊土地是他的,二兒子認為這塊土地是他的,三兒子也認為這塊土地是他的。大兒子和二兒子覺得自己吃虧了,于是他們開始爭吵。這時,阿凡提路過,詢問了爭吵的原因后,他笑了笑,給了他們一些建議,三兄弟因此停止了爭吵。

          分數(shù)的分子和分母同時乘或者除以相同的數(shù),分數(shù)的大小不變。

          分數(shù)的分子和分母同時乘或者除以一個數(shù)(零除外),分數(shù)的大小不變。

          分數(shù)的分子和分母同時乘或者除以相同的數(shù)(零除外),分數(shù)的大小不變。

         、缎〗Y。

          從判斷題中我們可以看出,分數(shù)的基本性質要注意什么?學到這兒,大家想一想,我們以前學過的'什么性質跟分數(shù)的基本性質類似?誰能用整數(shù)除法中商不變的性質來說明分數(shù)的基本性質?

          學生通過觀察和比較發(fā)現(xiàn),當分子和分母同時擴大或縮小相同的倍數(shù)時,所得的分數(shù)的大小并不會改變。這說明分數(shù)的大小取決于分子和分母的比例關系,只有在同向、同倍變化的情況下,分數(shù)的大小才能保持不變。這一規(guī)律也適用于其他分數(shù),只要分子與分母按相同的比例變化,所得的分數(shù)大小仍然保持不變。因此,我們可以得出分數(shù)的基本性質:分子與分母是同時變化的,是同向變化的,是同倍變化的。

          五、鞏固練習

          ⒈卡片練習:

         、沧鯬96“練一練”1、2。

         、橙の队螒颍

          數(shù)學王國即將舉辦一場音樂會,分數(shù)大家族的節(jié)目是女聲大合唱,演出時間緊迫,需要大家快速幫助合唱隊的成員按照要求排好隊伍。請盡快協(xié)助整理隊伍,謝謝!

          要求:第一排是所有同學的分數(shù)值等于,第二排是所有同學的分數(shù)值等于,還有一位同學是指揮,他是小明。我選擇小明作為指揮是因為他在團隊合作中展現(xiàn)出了出色的領導能力和組織能力,能夠有效地協(xié)調大家的行動,確保任務順利完成。

          【通過練習,分數(shù)是數(shù)學中的一個重要概念,可以表示一個整體被等分成若干份的情況。分數(shù)由分子和分母組成,分子表示被等分的部分數(shù)量,分母表示整體被等分的份數(shù)。分數(shù)可以用來表示部分與整體之間的關系,比如$frac{1}{2}$表示一個整體被等分成兩份中的一份。在分數(shù)的運算中,我們需要掌握分數(shù)的基本性質,比如分數(shù)的大小比較、分數(shù)的化簡、分數(shù)的四則運算等。對分數(shù)的基本性質有深刻的理解可以幫助我們更好地應用分數(shù)解決實際問題。

          六、課堂總結

          這節(jié)課你學到了什么?什么是分數(shù)的基本性質?你是怎樣理解的?

          七、布置作業(yè)

          做P97練習十八2。

        《分數(shù)的基本性質》教學設計2

          【教材依據(jù)】

          《分數(shù)的基本性質》是九年義務教育北師大版五年級上冊第三單元的內容。

          【設計理念】

          根據(jù)新課標的基本要求,我以培養(yǎng)學生的創(chuàng)新意識和實踐能力為重點,在教學中創(chuàng)設情境讓學生“自由大膽猜想——主動探究驗證——合作交流得到結果”的開放式教學流程。讓學生在問題情境中激活內在要求,大膽猜想,使實驗成為內在需求。通過觀察操作、經歷知識的形成。讓學生變被動的知識接受者為主動知識的探索者。

          【學情與教材分析】

          《分數(shù)的基本性質》是北師大版小學數(shù)學教材五年級上冊第三單元《分數(shù)》的教學內容,它既與整數(shù)除法的商不變性質有著內在的聯(lián)系,也是約分和通分的基礎,而約分和通分又是分數(shù)四則運算的重要基礎,因此,理解分數(shù)的基本性質顯得尤為重要。學生之前已經掌握了商不變的性質,在教學之后將其與分數(shù)的基本性質進行聯(lián)系,有意識地加強分數(shù)與除法的關系,以便把舊知識遷移到新的知識中來。

          【教學目標】

          1、經歷探索分數(shù)基本性質的過程,理解分數(shù)的基本性質。

          2、能運用分數(shù)基本性質,把一個數(shù)化成指定分母(或分子)大小不變的分數(shù)。

          3、經歷觀察、操作和討論等數(shù)學活動,體驗數(shù)學學習的樂趣及數(shù)學與日常生活密切聯(lián)系。

          【教學重點】運用分數(shù)的基本性質,把一個數(shù)化成指定分母(或分子)而大小不變的分數(shù)。

          【教學難點】聯(lián)系分數(shù)與除法的關系,理解分數(shù)的基本性質,溝通知識間的聯(lián)系。

          【教學準備】多媒體課件長方形白紙、圓片,彩色筆等。

          【教學過程】

          一、創(chuàng)設情境,激趣導入

          師:同學們,新的學期到來了,你們剛入校園時覺得我們學校都發(fā)生了哪些變化,(換了新課桌,有了新的洗手間,有了文化走廊,有了開心農場),說到開心農場,還有一個小故事,開學初,校長決定把這塊地的三分之一分給四年級,六分之二分給五年級,九分之三分給六年級,四年級同學認為校長不公平,分給六年級的同學多而分給他們的少,校長聽了,笑了,誰能根據(jù)自己的預習告訴老師校長笑什么?

          生1:四、五、六年級分的地一樣多。

          生2:……

          師:到底校長分的'公平不公平,我們來做個實驗吧?

          二、動手操作,探究新知

          1,小組合作,實驗探究。

          師:請同學們拿出你們準備好的學具,按平時的分組習慣四人一組,用你們的學具來代替這塊地,像校長一樣來分地吧。

          2,匯報結果

          師生交流:你們是怎樣做的?誰能說一說,請幾個同學上臺演示并口述演示過程。

          生1:用三張同樣的長方形的紙來代替這塊地,分別涂出其中的三分之一,六分之二,九分之三。經過對比發(fā)現(xiàn)三塊地一樣多。

          生2:用三個同樣的圓片分別涂出其中的三分之一,六分之二,九分之三。經過對比發(fā)現(xiàn)三塊地一樣多。

          生3:用三條線段分別畫出其中的三分之一,六分之二,九分之三。經過對比發(fā)現(xiàn)三塊地一樣多。

          生4:把分數(shù)化成小數(shù),他們的商也一樣,所以三塊地的面積一樣大。

          生5:……

          3、課件展示,得出結論。師:校長分的和你們一樣嗎?我們再來看看小電腦是如何拼的,(利用優(yōu)質資源課件演示分地的過程,師生共同觀察總結得到校長分的地一樣多。)

         。ㄔO計意圖:這樣設計的目的是為了更有利于學生主體個性的發(fā)揮,在探究活動中充分發(fā)揮學生的個體的潛能,給學生足夠的時間和想象的空間,進行小組合作式的探究活動,讓學生自由的猜想,使實驗成為自己的需要,同時讓學生思考用什么方法驗證,使學生帶著濃濃的興趣進入探究新的學習活動之中。)

          4、探索分數(shù)的基本性質。

          師:三個年級分的地一樣多,那么你們覺得、、這三個分數(shù)的大小怎么樣?

          生:相等。

          師:同學們請看這組分數(shù)有什么特點?(板書=)

          生:分數(shù)的分子分母發(fā)生了變化分數(shù)的大小不變。

          師:請同學們從左往右仔細觀察,第一個分數(shù)和第二個分數(shù)相比分子分母發(fā)生了什么變化?第一個和第二個,第二個和第三個呢?

          生:分子分母同時乘2,……

          師:誰能用一句換來描述一下這個規(guī)律?

          生:給分數(shù)的分子分母同時乘相同的數(shù)。(師隨著板書)

          師:同學們在反過來從右往左觀察,分數(shù)的分子、分母有什么變化規(guī)律?

          生:分數(shù)的分子分母同時除以相同的數(shù)。

          師:像這樣給分數(shù)的分子分母同時乘或(除以)相同的數(shù),分數(shù)的大小不變。就是我們這節(jié)課學習的新知識。(板書分數(shù)的基本性質)。

          師:結合我們的預習,對于分數(shù)的基本性質同學們還有什么不同的意見?

          生:0除外。

          師:為什么0要除外?

          生:因為分數(shù)的分母不能為0.

          師:(補充板書0除外)在分數(shù)的基本性質中,那幾個詞比較重要?

          生:同時相同0除外

          師:(把這三個詞用紅筆加重)同學們有沒有發(fā)現(xiàn)分數(shù)的基本性質和誰比較相似?

          生:商不變的性質。

          師:為什么?

          生:我們學過分數(shù)與除法的關系,被除數(shù)相當于分子,除數(shù)相當于分母,所以他們是相通的。

          師:數(shù)學知識中有許多知識如像商不變性質與分數(shù)的基本性質是一致的。因此平時學習中我們要觸類旁通,靈活運用,才會舉一反三。

          三:應用新知,練習鞏固。

         。ㄒ唬┚氁痪

         。ǘ┟蛴螒。老師手中有一個箱子,里面裝有許多水果,水果上面寫著不同的分數(shù),如果你摸到一個水果,說出一個與它大小相等,而分子分母不同的新分數(shù),這個水果就獎勵給你。

         。ǘ┡袛啵〒尨穑

          1、分數(shù)的分子、分母都乘過或除以相同的數(shù)分數(shù)的大小不變。

          2、把的分子縮小5倍,分母也縮小5倍分數(shù)的大小不變。

          3、給分數(shù)的分子加上4,要是分數(shù)的大小,分母也要加上4。

          (四)測一測

          1、把和都化成分母是10而大小不變的分數(shù)。

          2、把和都化成分子是4而大小不變的分數(shù)。

          3、的分子增加2,要是分數(shù)大小不變,分母應增加幾?

          四:總結。

          1、這節(jié)課大家表現(xiàn)的都很棒,誰能說說你這節(jié)課你都知道哪些知識?

          2、把板書最后補充成一條魚,希望大家擁有一雙明亮的眼睛,肚子里裝滿知識,在知識的海洋里遨游。(完成板書)

          五:作業(yè)練習冊2、4題

          【板書設計】

          分數(shù)的基本性質

          給分數(shù)的分子分母同時乘或除以相同的數(shù)(0除外)分數(shù)的大小不變。

          【教學反思】

          本節(jié)課教學,我讓學生在故事中感悟,激發(fā)了他們的學習興趣。在數(shù)學課上講故事,對孩子來說,無疑是新鮮有趣的。不僅如此,還能從中發(fā)現(xiàn)數(shù)學問題,這是多么美好的事情!

          這樣的設計真是激發(fā)了學生的學習興趣,學生帶著愉快的心情展開學習。課堂的故事導入就是引導學生以數(shù)學的視角來分析問題、解決問題,從而讓學生感受學習數(shù)學的價值。

          本節(jié)課教學是讓學生在感悟中自主探索。自主探索是學生學習活動的核心,它是讓每個學生根據(jù)自己的已有經驗、感受,用自己的思維方式,自由、開放地去探索、去發(fā)現(xiàn)、去創(chuàng)造。

          在學生通過聽故事、看圖片,讓學生猜想、、這三個分數(shù)是否真的相等,并聯(lián)想學過的知識或借助學具,怎樣證明你的聯(lián)想是正確的。學生想出了多種方法證明這三個分數(shù)也是相等的,體現(xiàn)了學生思維的廣度,這種設計克服了學生思維的惰性,有利于學生自主探索的學習習慣的養(yǎng)成。課堂給學生多設計這樣的開放性的問題,多給學生開展一些探索性的活動,相信不同的學生在數(shù)學上都會有不同的發(fā)展。

        《分數(shù)的基本性質》教學設計3

          教學內容:蘇教版小學數(shù)學第十冊第95頁至97頁。

          教學目標:

          知識目標:通過教學使學生理解和掌握分數(shù)的基本性質,能利用它改變分數(shù)的分子和分母,而使分數(shù)的大小不變。

          能力目標:培養(yǎng)學生的觀察能力、動手操作能力和分析概括能力等。

          情感目標:讓學生在學習過程當中養(yǎng)成互相幫助、團結協(xié)作的良好品德。

          教學準備:圓形紙片、彩筆、各種卡片。

          教學過程:

          一、創(chuàng)設情境,激發(fā)興趣

          孫悟空有3根一模一樣的甘蔗,小猴子貝貝、佳佳、丁丁看見了,一哄而上,叫嚷著要吃甘蔗。孫悟空說: “好,貝貝分第一根甘蔗的,佳佳分第二根甘蔗的,丁丁分第三根甘蔗的!必愗悺⒓鸭崖犃,連忙說:“孫大圣,不公平,我們要分得和丁丁的同樣多!睂O悟空真的分得不公平嗎?(學生思考片刻)

          【通過學生耳熟能詳?shù)娜宋飳υ,給學生設計一個懸念,抓住學生的好奇心理,由此激發(fā)學生的學習興趣。】

          二、動手操作 、導入新課

          師:我們也來分分看。(學生拿出準備好的圓形紙片。)師:我們把三張紙片看成三塊餅,大家比比看,每人的三塊餅大小相等嗎?請拿出第一塊餅,我想要一塊,而且大小要是第一塊餅的一半,你能做到嗎?你給我的為什么是這塊餅的一半呢?用分數(shù)怎么表示呢?我現(xiàn)在想要兩塊,而且大小要跟剛才給我的餅一樣大,你又能做到嗎?用分數(shù)怎樣表示呢?我如果想要四塊,大小跟前兩次給我的一樣,你還能做到嗎?這次用分數(shù)又該怎樣表示呢?這三個分數(shù)大小相等嗎?為什么呢?這節(jié)課,我們就來研究這個數(shù)學問題。

          【通過學生的動手操作,初步感知三個分數(shù)的大小相等,為尋找原因設置懸念,再次激發(fā)學生的學習興趣。】

          三、觀察對比, 由“數(shù)”變 “式”

          你們三次給我的餅大小相等嗎?那么這三個分數(shù)大小怎樣?可以用怎樣的式子表示?(==)(從這里你能看出,孫悟空分甘蔗,分得公平嗎?)

          四、概括分析,由“式”變 “語”

         、庇^察一下這個式子,3個分數(shù)有什么不同?有什么地方相同?分數(shù)的大小為什么會不變呢?要弄清楚這個問題,我們必須先研究分數(shù)的分子、分母是怎樣變化的。

         、蚕葟淖笸铱,是怎樣變?yōu)榕c它相等的的?

          (1)分母乘2,分子乘2。

          根據(jù)分數(shù)的意義,""表示把單位"1"平均分成2份,取其中的1份,而現(xiàn)在把單位"1"平均分成4份,也就是把原兩份中的每一份又平均分成2份, 所以現(xiàn)在平均分成了2×2=4(份),現(xiàn)在要得跟原來的同樣多,必須取幾份?[1×2=2(份)]==

          即原來把單位"1"平均分成2份,取1份,現(xiàn)在把平均分的份數(shù)和取的份數(shù)都擴大2倍,就得到。與的大小相等,分數(shù)值沒變。

          (2)由到,分子、分母又是怎樣變化的?(把平均分的份數(shù)和取的份數(shù)都擴大了4倍。)==

          (3)誰能用一句話說出這兩個式子的變化規(guī)律?

         、吃購挠彝罂

          (1) 是怎樣變化成與之相等的的?

          原來把單位"1"平均分成4份,取其中的2份,現(xiàn)在把同樣的單位"1"平均分成2份,即把原來的每兩份合并成 1份,現(xiàn)在要取得跟原來的同樣多,只需取幾份?[2÷2=1(份)]也就是現(xiàn)在把平均分的份數(shù)和取的份數(shù)都縮小了2倍,得到,分數(shù)的大小沒有變。

          ==

          (2) 又是怎樣變成的?(把平均分的份數(shù)和取的份數(shù)都縮小了4倍。)

          ==

          (3)誰能用一句話說出這兩個式子的變化規(guī)律?

         、淳C合以上兩種變化情況,誰能用一句話概括出其中的規(guī)律?你覺得有什么要補充的.嗎?(不能同時乘或除以0)為什么?

         、颠@就是今天我們所學的“分數(shù)的基本性質”(板書課題,出示“分數(shù)的基本性質”)。

          (1)理解概念。

          學生讀一遍,你認為哪幾個字特別重要?(相同的數(shù)、0除外)相同的數(shù),指一些什么數(shù)?為什么零除外?

          (2)瘃木鳥診所。(請說出理由)

          分數(shù)的分子和分母同時乘或者除以相同的數(shù),分數(shù)的大小不變。( )

          分數(shù)的分子和分母同時乘或者除以一個數(shù)(零除外),分數(shù)的大小不變。( )

          分數(shù)的分子和分母同時乘或者除以相同的數(shù)(零除外),分數(shù)的大小不變。( )

         、缎〗Y。

          從判斷題中我們可以看出,分數(shù)的基本性質要注意什么?學到這兒,大家想一想,我們以前學過的什么性質跟分數(shù)的基本性質類似?誰能用整數(shù)除法中商不變的性質來說明分數(shù)的基本性質?

          【此過程主要由學生通過觀察、比較,得出這三個分數(shù)大小相等的規(guī)律,由此牽引到其他的有同等規(guī)律的分數(shù)中,從而引出分數(shù)的基本性質:分子、分母是同時變化的,是同向變化的(是擴大都擴大,是縮小都縮。,是同倍變化的(擴大或縮小的倍數(shù)相同)。只有這樣變化,分數(shù)的大小才不會變。】

          五、鞏固練習

         、笨ㄆ毩暎

         、沧鯬96“練一練”1、2。

         、橙の队螒颍

          數(shù)學王國開音樂會,分數(shù)大家族的節(jié)目是女聲大合唱,只有幾分鐘就要演出了,請大家趕緊幫合唱隊的成員按要求排好隊。

          要求:第一排是分數(shù)值等于的,第二排是分數(shù)值等于的,還有一位同學是指揮,他是誰?你是怎樣想的?

          【通過練習,讓學生加深對分數(shù)的基本性質的理解,為下節(jié)課分數(shù)的基本性質的應用打好堅實的基礎。】

          六、課堂總結

          這節(jié)課你學到了什么?什么是分數(shù)的基本性質?你是怎樣理解的?

          七、布置作業(yè)

          做P97練習十八2。

        《分數(shù)的基本性質》教學設計4

          教學要求

         、俜謹(shù)是數(shù)學中的一種特殊表示形式,用來表示一個整體被分成若干等份中的一部分。分數(shù)有一些基本性質,比如分數(shù)的大小與分子成正比,分母成反比,即分子越大,分數(shù)越大;分母越大,分數(shù)越小。另外,分數(shù)可以化簡為最簡形式,即分子與分母沒有共同的因數(shù)。當我們需要比較或運算不同分母的分數(shù)時,可以通過找到它們的最小公倍數(shù),將分數(shù)化為相同分母的形式,從而方便比較大小或進行運算。

         、谂囵B(yǎng)學生觀察、分析和抽象概括能力。

         、蹪B透“事物之間是相互聯(lián)系”的辯證唯物主義觀點。

          教學重點理解分數(shù)的基本性質。

          教學用具每位學生準備三張同樣的長方形紙條;教師:紙條、投影片等。

          教學過程

        一、創(chuàng)設情境

          1.120÷30的商是多少?被除數(shù)和除數(shù)都擴大3倍,商是多少?被除數(shù)和除數(shù)都縮小10倍呢?

          2.說一說:

         。1)商不變的性質是什么?

          (2)分數(shù)與除法的關系是什么?

          3.填空。

          1÷2=(1×2)÷(2×2)==。

          二、揭示課題

          分數(shù)除法中是否存在商不變的性質,讓我們一起來探索吧!你認為在分數(shù)中會不會存在類似的性質呢?這個性質會是什么呢?讓我們一起大膽猜測吧!

          隨著學生的回答,教師板書課題:分數(shù)的基本性質。

          三、探索研究

          1.動手操作,驗證性質。

         。1)請拿出三張同樣大小的長方形紙條,將它們分別平均分成2份、4份、6份,并分別用不同顏色涂抹其中的1份、2份、3份。請用分數(shù)形式表示每張紙條上被涂色的部分。

          (2)觀察比較后引導學生得出:==

         。3)從左往右看:==

          由變成,平均分的份數(shù)和表示的份數(shù)有什么變化?

          把平均分的份數(shù)和表示的份數(shù)都乘以2,就得到,即==(板書)。

          把平均分的份數(shù)和表示的份數(shù)都乘以3,就得到,即:==(板書)。

          引導學生初步小結得出:分數(shù)的分子、分母同時乘以相同的數(shù),分數(shù)的大小不變。

         。4)從右往左看:==

          引導學生觀察明確:的分子、分母同時除以2,得到。同理,的分子、分母同時除以3,也可以得到。

          讓學生再次歸納:分數(shù)的分子、分母同時除以相同的數(shù),分數(shù)的大小不變。

          (5)引導學生概括出分數(shù)的基本性質,并與前面的猜想相回應。

         。6)提問:這里的“相同的數(shù)“,是不是任何數(shù)都可以呢?(補充板書:零除外)

          2.分數(shù)的基本性質與商不變的性質的比較。

          在除法里有商不變的性質,在分數(shù)里有分數(shù)的基本性質。

          想一想:根據(jù)分數(shù)與除法的關系以及整數(shù)除法中商不變的性質,你能說明分數(shù)的基本性質嗎?

          3.學習把分數(shù)化成指定分母而大小不變的'分數(shù)。

         。1)出示例2,幫助學生理解題意。

          (2)啟發(fā):要把和化成分母是12而大小不變的分數(shù),分子應該怎樣變化?變化的根據(jù)是什么?

         。3)讓學生在書上填空,請一名學生口答。

          4.練習。教材第108頁的做一做。

          四、課堂實踐。

          練習二十三的1、3題。

          五、課堂小結

          1.這節(jié)課我們學習了什么內容?

          2.什么是分數(shù)的基本性質?

          六、課堂作業(yè)

          練習二十三的第2題。

          七、思考練習

          練習二十三的第10題。

          教學反思:

          “分數(shù)的基本性質”是小學五年級下冊數(shù)學教材的重要內容,它是約分、通分的基礎,對于學習比的基本性質也具有重要意義。因此,分數(shù)的基本性質是本單元的重點課程。在這節(jié)課上,我將采用“猜想和驗證”的教學方法,為學生留出充分的探索時間和廣闊的思維空間,讓他們在實踐中掌握知識,培養(yǎng)數(shù)學思維。通過這樣的教學方式,不僅使學生掌握了數(shù)學基本知識,更重要的是激發(fā)了他們學習的主動性,培養(yǎng)了他們解決實際問題的能力。這樣的教學目的在于培養(yǎng)學生學會學習、學會思考、學會創(chuàng)造,從而使他們能夠運用數(shù)學的思維方式解決未來生活中遇到的各種問題,這也是學生必備的基本素質。

          這節(jié)課是在學生已經掌握了商的不變性質,并具有一定應用經驗的基礎上進行的。在這節(jié)課中,我設計了一些新的挑戰(zhàn)和問題,幫助學生深入理解商的不變性質,并在實際問題中靈活運用所學知識。通過這種方式,學生可以提高對商的理解和運用能力,為他們進一步學習和應用商的相關知識打下堅實的基礎。

          1、商不變的性質與除法、分數(shù)的關系密切相關,商不變意味著在一定條件下商的值保持不變。在商不變的基礎上,我們可以猜想分數(shù)的基本性質是什么?請同學們根據(jù)商不變的性質大膽猜想一下,分數(shù)的基本性質是什么?并且說出你們的想法。

          2、讓學生在折紙游戲中充分發(fā)揮主體作用,通過操作、觀察、比較來驗證自己的猜想?梢宰屗麄儑L試不同的折法,觀察折疊后的形狀和顏色變化,并用不同的顏色表示不同的分數(shù),培養(yǎng)他們的動手能力和觀察解決問題的能力。

          3、設計練習時要考慮到知識的轉化能力,因此練習的設計應該具有典型性、多樣性、深度和靈活性。首先,通過基礎練習深化對分數(shù)基本性質的理解,包括分子、分母、約分、通分等方面。然后,在學完整個知識點后,進行綜合練習,鞏固知識,提高能力。在練習中注重應用拓展,讓學生能夠將所學知識應用到實際問題中,培養(yǎng)他們解決問題的能力。

        《分數(shù)的基本性質》教學設計5

          教學目標

          1. 讓學生通過經歷預測猜想——實驗分析——合情推理——探究創(chuàng)造的過程,理解和掌握分數(shù)的基本性質,知道它與整數(shù)除法中商不變性質之間的聯(lián)系。

          2. 根據(jù)分數(shù)的基本性質,學會把一個分數(shù)化成用指定的分母做分母或指定的分子做分子而大小不變的分數(shù),為學習約分和通分打下基礎。

          3. 培養(yǎng)學生觀察、分析和抽象概括的能力,滲透事物是互相聯(lián)系、發(fā)展變化的辯證唯物主義觀點。體驗到數(shù)學驗證的思想,培養(yǎng)敢于質疑、學會分析的能力。

          教學重點使學生理解分數(shù)的基本性質。

          教學難點讓學生自主探索,發(fā)現(xiàn)和歸納分數(shù)的基本性質,以及應用它解決相關的問題。

          教學過程

          一、故事情景引入

          同學們,每年的中秋節(jié)你們都會吃什么呢?對了,月餅。中秋吃月餅是我們中國傳統(tǒng)風俗。去年的中秋節(jié),易老師的鄰居李奶奶家里,發(fā)生了一件有趣的事情,大家想不想知道?

          好,既然大家都這么好奇,就張開小耳朵認真聽。去年的中秋節(jié)呀,李奶奶家的孫兒小紅、小明、小兵都來了,家里可熱鬧了。李奶奶笑得合不攏嘴,她拿出一個又大又圓的月餅,對孫兒們說:“孩子們,奶奶給你們分月餅了。老大小紅,奶奶分這塊月餅的1/3給你,老二小明,奶奶分這塊月餅的2/6給你,老三小兵,奶奶分這塊月餅的3/9給你,(邊講邊貼出名字和三個分數(shù))你們同意嗎?”奶奶的話剛講完,小紅就嘟著嘴叫了起來:“奶奶你不公平!分給小兵的多,分給我的少!”小明連忙叫著:“奶奶不公平,奶奶偏心!”只有小兵在偷著樂。

          同學們,你們覺得奶奶公平嗎?現(xiàn)在同桌之間討論一下。

          討論完了請舉手。

          生甲:“我覺得不公平,小紅分得多!

          生乙:“我覺得小明分得多。”

          生丙:“我覺得公平,他們三個分得一樣多!

          師:“看樣子我們班的同學也爭論起來了,到底李奶奶的月餅分得公不公平,上完這一節(jié)課同學們就會明白了。”

          二、新授

          師:“下面我們來做個實驗。同學們請你們拿出老師為你們準備的學具袋,看看袋子里有些什么呢?(圓片)有幾張?(三張)”

          請你們把這三張圓片疊起來,比一比大小,看看怎么樣?

          生:“三張圓片一樣大!

          1.師: “ 下面我們就用三張一樣大的圓片代替月餅,象李奶奶一樣來分月餅了!

          首先,請在第一張圓片上表示出它的1/3;

          再在第二張圓片上表示出它的2/6;

          然后在第三張圓片上表示出它的3/9。

          好了,大家動手分一分。(教師巡視指導)

          2. 師:“分完了的請舉手?

          老師跟你們一樣,也準備了三張同樣大小的圓片。(邊說邊操作,同樣大)

          下面請哪位同學說一說,你是怎么分的?”

          生:“把第一個圓片平均分成三份,取其中的一份,就是它的三分之一!

          生:“把第二個圓片平均分成六份,取其中的兩份,就是它的六分之二!

          師:“那九分之三又是怎么得到的呢?大家一起說!

          生:“把這塊圓片平均分成九份,取其中的三份,就是它的九分之三。 ”

         。▽W生說的同時,教師操作,分完后把圓片貼在黑板上。)

          3. 師:“同學們,觀察這些圓的陰影部分,你有什么發(fā)現(xiàn)?”

          小結:原來三個圓的陰影部分是同樣大的。

          師:“ 現(xiàn)在再來評判一下,奶奶分月餅公平嗎?為什么?”(請幾名學生回答)

          生:“奶奶分月餅是公平的,因為他們三個分得的月餅一樣多!

          師:“現(xiàn)在我們的意見都統(tǒng)一了,奶奶是非常公平的,他們三個人分的月餅一樣多。那你覺得1/3、2/6、3/9這三個分數(shù)的大小怎么樣呢?”

          生甲:“通過圖上看起來,這三個分數(shù)應該是一樣大的!

          生乙:“這三個分數(shù)是相等的!

          師:“剛才的試驗證明,它們的大小是相等的。”(板書,打上等號)

          4. 研究分數(shù)的基本規(guī)律。

          師:“我們仔細觀察這一組分數(shù),它的什么變了,什么沒變?”

          生甲:“三個分數(shù)的分子分母都變了,大小沒變!

          師:“那它的分子分母發(fā)生了怎樣的變化呢?讓我們從左往右看。

          第一個分數(shù)從左往右看,跟第二個分數(shù)比,發(fā)生了什么變化?”

          生乙:“它的`分子分母都同時擴大了兩倍!

          師:“跟第三個分數(shù)比,它又發(fā)生了什么變化?”(生回答)對了,它的分子分母都同時擴大了三倍。

          再引導學生反過來看,讓學生自己說出其中的規(guī)律。(邊講邊板書)

          教師小結:“剛才大家都觀察得很仔細,這組分數(shù)的分子分母都不同,它們的大小卻一樣,那么,分子分母發(fā)生怎樣變化的時候,它的大小不變呢?同桌之間互相說一說,總結一下,好嗎?”

          學生發(fā)言

          小結:像分數(shù)的分子分母發(fā)生的這種有規(guī)律的變化,就是我們這節(jié)課學習的新知識。分數(shù)的基本性質。

          5. 深入理解分數(shù)的基本性質。

          師:“什么叫做分數(shù)的基本性質呢?就你的理解,用自己的語言說一說。”(學生討論后發(fā)言)

          師:剛才同學們都用自己的語言說了分數(shù)的基本性質,我們的書上也總結了分數(shù)的基本性質,現(xiàn)在請打開書看到108頁。看看書上是怎么說的,是你說得好,還是書上說得好,為什么?

          齊讀分數(shù)的基本性質,并用波浪線表出關鍵的詞。

          生甲:我覺得“零除外”這個詞很重要。

          生乙:我覺得“同時”“相同”這兩個詞很重要。

          師:想一想為什么要加上“零除外”?不加行不行?

          讓學生結合以前學過的商不變的性質討論,為什么加“零除外”。

          教師小結:“以三分之一這個分數(shù)為例,它的分子分母同時除以零,行嗎?不行,除數(shù)為零沒意義。所以零要除外。同時乘以零呢?我們就會發(fā)現(xiàn),分子分母都為零了,而分數(shù)與除法的關系里,分母又相當于除數(shù),這樣的話,除數(shù)又為零了,無意義。所以一定要加上零除外!保ㄟ呏v邊板書。)

          三、應用

          1.學了分數(shù)的基本性質到底又什么用呢?老師告訴你們,根據(jù)分數(shù)的基本性質,我們就能變魔術一樣,把一個分數(shù)變成多個跟它大小一樣,分子分母卻不同的新分數(shù)。下面就讓我們來變個魔術。

          2.學生練習課本例題2,兩名學生在黑板上做。

          3.學生自己小結方法。

          4.按規(guī)律寫出一組相等的分數(shù)。

        《分數(shù)的基本性質》教學設計6

          一、教學目標:

          1、讓學生經歷分數(shù)基本性質的探究過程,理解和掌握分數(shù)的基本性質,初步建立數(shù)學模型。

          2、利用分數(shù)的基本性質把一個分數(shù)化為指定分母(或分子)而大小不變的分數(shù)。

          3、培養(yǎng)學生的觀察、概括等思維能力及(滲透變與不變)數(shù)學學習興趣。

          二、教學重點:

          理解掌握分數(shù)的基本性質,它是約分,通分的依據(jù)

          三、教學難點:

          理解和掌握分數(shù)的基本性質,初步建立數(shù)學模型。

          四、教學準備:

          課件、正方形的紙。

          五、教學設計過程:

         。ㄒ唬┻w移舊知.提出猜想

          1、回憶舊知

          猜信封:老師手上的信封里有一個數(shù)、一道算式,我抽出其中一張 ,誰能猜出另一張是什么?出示: 2÷3

          你為什么這樣猜呢?引導學生回憶分數(shù)與除法的關系。媒體演示:分數(shù)與除法的關系:

          被除數(shù)÷除數(shù)=

          誰能說一道與2÷3商一樣的除法算式?學生一邊說,教師一邊板書算式。你為什么認為這些算式的商是一樣的?引導學生回憶什么是商不變的性質?媒體出示:商不變的性質:

          被除數(shù)和除數(shù)同時乘或除以相同的數(shù)(零除外),商不變。

          2、提出猜想:

          既然分數(shù)與除法的關系這么緊密.除法有商不變性質,那分數(shù)是否也會有這樣的性質,請大家大膽猜想一下。(學生可能根據(jù)商不變性質推導出分數(shù)的基本性質,學生匯報后投影出示:分數(shù)的分子和分母同時乘或除以相同的`數(shù)(零除外),分數(shù)的大小不變。)

          (二)驗證猜想,建構新知

          A、 看圖分類

          下面是一組相等的正方形,請寫出每個圖形陰影部分所表示的分數(shù),并把相同的分數(shù)分在一起。

          B、 討論方法

          師:你是怎么判斷它們相等的?

          師:它們相等,用算式可以怎么表示?

          1/2 = 2/4 = 4/8

          C、研究規(guī)律

          師:這些相等的式子,除了我們從圖上看到的大小相等之外,還有沒有其他的秘密呢?

          利用研究卡進行研究。

          確定的研究對象

          分子和分母同時乘上或者

          除以一個相同的數(shù)

          得到的分數(shù)

          研究對象與得到的分數(shù)相等嗎?

          相等( )不相等( )

          猜想是否成立?

          成立( )不成立( )

          充分利用學生的生成資源:揭示課題:分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。(板書)

          師:為什么要0除外?

          師:對于這句話,你是怎么理解的?(讓學生互相討論,并進行說明。)

          練習:2/3=( )/18、 6/21=2/( )、 3/5=21/( )、 27/39=( )/13

          師:這里面什么變了,什么不變?(生:分子和分母變了,但分數(shù)的大小不變)

          師:分子與分母是怎樣變化的?(同時乘或除以相同的數(shù),0除外)

          師:分數(shù)的基本性質與商不變性質有什么聯(lián)系?

          D、質疑完善

          3/4 = 3×( )/ 4×( )

          師:括號中可以填哪些數(shù)?

          預設:可以填無數(shù)個數(shù)

          師:如果只用一個數(shù)來表示,填什么數(shù)好?

          預設:字母

          師:這個字母有什么特殊要求嗎?(0除外)

          得到一個初級的數(shù)學模型。3/4= 3×X/ 4×X(X≠0)

          讓學生打開課本進行閱讀、內化,并想一想還有什么問題嗎?

         。ㄈ 練習升華

          1、5/7=( )/35 、3/4=9/( )、 3/( )=12/20、 16/24=( )/3

          2、把5/6和1/4都化為分母為12而大小不變的分數(shù)。

          3、把2/3和3/4都化為分子為6而大小不變的分數(shù)。

          4、把2/5的分子加上2以后,要使分數(shù)的大小不變,分母應加上多少?

          5、 和 哪一個分數(shù)大,你能講出判斷的依據(jù)嗎?

         。ㄋ模┛偨Y延伸

          師:這節(jié)課學了什么?

          師:如果一個分數(shù)為A/B,你能用一個式子來表示分數(shù)的基本性質嗎?

          A/B=A×X/ B×X(X≠0)或A/B=A÷X/ B÷X(X≠0)(板書)

          六、作業(yè)p87-1、2

          板書設計

          分數(shù)基本性質

          分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。

          A/B=A×X/ B×X(X≠0)或A/B=A÷X/ B÷X(X≠0)

          6÷8

          3÷4

          12÷16

        《分數(shù)的基本性質》教學設計7

          教學目標

          1、經歷探索分數(shù)的基本性質的過程,理解分數(shù)的基本性質。

          2、能運用分數(shù)的基本性質,把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)。

          3、經歷觀察、操作和討論等學習活動,體驗數(shù)學學習的樂趣。

          教學重點:

          理解掌握分數(shù)的基本性質。

          教學難點:

          歸納性質

          教學設計

         。ㄒ唬﹦(chuàng)設情境,引起學生參與興趣

          1、猴王變戲法(學生模仿復習)

          除法式子變形

          分數(shù)與除法變形

          2、教師出示三只可愛的小猴圖片,獎勵聽故事:

          有一天,猴王做了三塊大小一樣的餅分給小猴們吃,它先把第一塊餅平均切成兩塊,分給第一只小猴一塊,第二只小猴見到說:“太小了,我要兩塊!焙锿蹙桶训诙䦃K餅平均切成四塊,分給第二只小猴兩塊。第三只小猴更貪,它搶著說:“我要三塊,我要三塊。”于是,猴王又把第三塊餅平均切6塊,分給第三只小猴三塊。

          同學們,你知道哪只猴子分得的`多嗎?(哪只猴子分得的多?讓學生發(fā)表自己的意見)

          3、教師出示三塊大小一樣的餅,通過師生分餅,觀察驗收后得出結論:三只猴子分得的餅一樣多。聰明的猴王是用什么辦法來滿足小猴子們的要求,又分得那么公平的呢?同學們想知道有什么規(guī)律嗎?

         。ǘ┨骄啃轮

          1、動手操作、形象感知

          請同學們拿出三張相同形狀同樣大的紙,把每張紙都看作一個整體。動手折出平均分的份數(shù)2份、4份、6份,動筆把其中的1份、2份、3份畫上陰影,再把陰影部分剪下來,將剪下的陰影部分重疊,比一比記錄下結論。

        《分數(shù)的基本性質》教學設計8

          教學目標:

          知識與技能:理解和掌握分數(shù)的基本性質,知道分數(shù)基本性質與整數(shù)除法中商不變性質的關系。能運用分數(shù)的基本性質把一個分數(shù)化成分母相同而大小不變的分數(shù);培養(yǎng)學生觀察比較、抽象概括及動手實踐的能力,進一步發(fā)展學生的思維。

          過程與方法:經歷探究分數(shù)基本性質的過程,感受“變與不變”,“轉化”等數(shù)學思想方法。情感態(tài)度與價值觀:激發(fā)學生積極主動的情感狀態(tài),養(yǎng)成注意傾聽的習慣,體驗互助合作的樂趣。

          教學重點:理解和掌握分數(shù)的基本性質,會運用分數(shù)的基本性質。

          教學難點:自主探究出分數(shù)的基本性質

          教學準備:PPT課件、每小組準備三個同樣大小的圓形紙片、三張完全一樣的長方形(正方形)紙、直尺、彩筆等。

          教學流程:

          一、故事導入激趣引思

          引言:細心的同學一定聽出來了,剛剛老師播放的是哪部動畫片的主題歌?對,我們今天的學習就從西游記的故事說起。

          講故事:話說唐僧師徒四人去西天取經,一路上歷經磨難。一天,他們走得又累又餓,幸好路過一個村莊,化緣得到三塊同樣大小的餅。唐僧心想:三塊餅,四個人不太好分呀!但是很快他就想到了一個分餅的方案,他對徒弟們說:我準備將第一塊餅,平均分成2份,八戒吃其中的`二分之一;將第二塊餅平均分成4份,沙和尚吃其中的四分之二;將第三塊餅平均分成8份,悟空吃其中的八分之四,你們同意這樣的分配方案嗎?師父的話音未落,豬八戒便跳出來說:“我不同意這樣的分法,師父你太偏心了,憑什么猴哥吃那么多有八分之四,而我卻吃那么少才二分之一。同學們,請你們判斷一下,豬八戒說的對嗎,師父真的偏心嗎?

          生發(fā)表見解。

          二、自主合作探索規(guī)律

          1、反饋引導:1/2=2/4=4/8!叭齻徒弟分得的餅一樣多---等式---仔細瞧瞧這組分數(shù)等式的分子分母相同么?但是它們的大小卻?再用變化的眼光瞧瞧,(師畫正反向兩箭頭)我們發(fā)現(xiàn)分數(shù)的分子分母改變了,什么卻沒有變?師貼板帖分數(shù)可真與眾不同呵!

          2、提出探究任務:那如果我讓們動手做或者聯(lián)系生活實際想,像這樣大小相等的分數(shù),只有一組嗎?你們能不能找出一些給老師看看?找之前請位同學為我們讀一讀小組合作學習要求:

         。1)每個小組找出一組大小相等的分數(shù),并想辦法證明這組分數(shù)大小相等。

         。2)思考:在寫分數(shù)的過程中你們發(fā)現(xiàn)了什么規(guī)律?

          組內商量一下然后開始行動!

          3、小組研究教師巡視

          4、全班匯報

          交流評價(教師相機板書)圓紙片匯報長方形紙匯報正方形紙匯報及聯(lián)系一組人數(shù)說發(fā)現(xiàn)規(guī)律把每組數(shù)從左往右或者從右向左仔細觀察你能發(fā)現(xiàn)分子分母的怎樣的變化規(guī)律?(可以舉例說演繹推理深入)隨機更換貼圖

          板書課題:分數(shù)的基本性質打出幻燈

          5、反思規(guī)律看書對照找出關鍵詞要求重讀共同讀

          6、引證規(guī)律:3/4=12/16剛剛動手做我們驗證了這組大小相等的分數(shù)的正確性并由此發(fā)現(xiàn)了分數(shù)的基本性質那你能否利用分數(shù)與除法的關系以及整數(shù)除法中商不變性質,再一次說明分數(shù)的基本性質。

          三、自學例題運用規(guī)律

          過渡:同學們剛剛的精彩表現(xiàn)展示出了你們強大的學習能力,所以在接下來的一段時間里,老師請你們自學課本96頁的例2并完成相應“練一練”,F(xiàn)在開始

          生自學

          集體評議:例2練一練1和2,請說說你的根據(jù)和想法!重點讓學生說說根據(jù)什么,分母、分子是如何變化的。

          四、多層練習鞏固深化

          1、判斷對錯并說明理由

          2/9=8/36,4/9=2/3,3/4=3a/4a,5/10=3/6,1/5=4/8

          2、把6/20,70/100,45/50,1/2,4/5化成分母相同而大小不變的分數(shù)

          思考:分數(shù)的分母相同,能有什么作用?

          3、圈分數(shù)游戲圈出與1/2相等的分數(shù)

          4、對對碰與1/2,2/3,3/4生生組組師生互動

          五、課堂小結課堂作業(yè)

          結語:你看,運用數(shù)學知識玩游戲,也是樂趣無窮。這節(jié)課我們就上到這兒,

          作業(yè):余下來的時間請完成課本97頁練習十八的1-3題,做在書上。

        《分數(shù)的基本性質》教學設計9

          教學目標:

          知識與技能:掌握分數(shù)的基本性質對于學生來說非常重要。分數(shù)的基本性質包括:分數(shù)的大小與分子、分母的關系,分數(shù)的化簡和擴大,分數(shù)的比較大小等。通過學習分數(shù)的基本性質,可以幫助學生更好地理解和運用分數(shù),提高他們的數(shù)學能力。同時,分數(shù)的基本性質與整數(shù)除法中商不變性質有著密切的關系,這也有助于學生對整數(shù)除法的理解和運用。在學習中,學生需要掌握如何將一個分數(shù)化簡為分母相同而大小不變的分數(shù)。這需要學生觀察比較分數(shù)的大小,抽象概括規(guī)律,并進行實際操作。通過這樣的練習,可以培養(yǎng)學生的邏輯思維能力和數(shù)學解決問題的能力。因此,學生在學習分數(shù)的基本性質時,應注重理解概念,掌握方法,多進行練習,提高自己的數(shù)學素養(yǎng)。

          過程與方法

          在探索分數(shù)基本性質的過程中,我們體會到了數(shù)學思想方法中的“變與不變”以及“轉化”的重要性。這個過程激發(fā)了我們的求知欲,也讓我們體會到了數(shù)學思維的樂趣。通過互相交流和合作,我們不僅增進了對分數(shù)的理解,還培養(yǎng)了團隊合作的意識。這種積極主動的學習態(tài)度將成為我們探索更多數(shù)學知識的動力,讓我們更加享受數(shù)學帶來的樂趣。

          教學重點

          理解和掌握分數(shù)的基本性質,會運用分數(shù)的基本性質。

          教學難點

          自主探究出分數(shù)的基本性質

          教學準備:

          PPT課件、每小組準備三個同樣大小的圓形紙片、三張完全一樣的長方形(正方形)紙、直尺、彩筆等。

          教學流程:

        一、故事導入激趣引思

          引言:好的,我來修改一下:大家是否能猜出剛剛老師播放的是哪首經典動畫片的主題曲呢?沒錯,我們今天的學習將從中國古典名著《西游記》的故事開始。

          講故事:唐僧師徒四人行至一村莊,路過一家餅鋪,慈悲心化緣得到三塊同樣大小的餅。唐僧想著如何公平地分配這三塊餅,便提出了一個方案:將第一塊餅平均分成2份,讓豬八戒吃其中的一半;將第二塊餅平均分成4份,讓沙和尚吃其中的一半;將第三塊餅平均分成8份,悟空吃其中的一半。唐僧的提議引起了豬八戒的不滿,他認為這樣分配偏心,為什么悟空可以吃到一半,而他只能吃到一半。唐僧聽了豬八戒的意見后,考慮了一下,覺得確實不太公平。于是,他重新想了一個更公平的分餅方案,讓每個人都能公平地分享這三塊餅。

          生發(fā)表見解。

          二、自主合作探索規(guī)律

          1、三個徒弟平均分得的餅一樣多。我們來看一下這組分數(shù)等式:1/2=2/4=4/8。觀察一下這些分數(shù)的分子和分母,它們是相同的嗎?雖然分數(shù)的分子和分母不同,但它們的值卻相等。再換個角度看,我們發(fā)現(xiàn)分數(shù)的分子和分母發(fā)生變化,但它們的比值保持不變。分數(shù)真是一種獨特的數(shù)學形式呢!

          2、

         。1)每個小組找出一組大小相等的.分數(shù),并想辦法證明這組分數(shù)大小相等。

         。2)思考:在寫分數(shù)的過程中你們發(fā)現(xiàn)了什么規(guī)律?

          組內商量一下然后開始行動!

          3、小組研究教師巡視

          4、全班匯報

          交流評價(教師相機板書)圓紙片匯報長方形紙匯報正方形紙匯報及聯(lián)系一組人數(shù)說發(fā)現(xiàn)規(guī)律把每組數(shù)從左往右或者從右向左仔細觀察你能發(fā)現(xiàn)分子分母的怎樣的變化規(guī)律?(可以舉例說演繹推理深入)隨機更換貼圖

          板書課題:分數(shù)的基本性質打出幻燈

          5、反思規(guī)律看書對照找出關鍵詞要求重讀共同讀

          6、當我們將3除以4得到的結果3/4,與12除以16得到的結果12/16進行比較時,我們發(fā)現(xiàn)它們是相等的。這說明了分數(shù)的一個基本性質:即分子和分母同時乘以(或除以)同一個非零數(shù)時,分數(shù)的值不變。這個性質也可以通過整數(shù)除法中商不變的性質來解釋:在分數(shù)中,當分子和分母同時乘以(或除以)同一個非零數(shù)時,相當于整數(shù)除法中被除數(shù)和除數(shù)同時乘以(或除以)同一個非零數(shù),商的值也不變。這再次強調了分數(shù)的基本性質,幫助我們更好地理解和運用分數(shù)的概念。

          三、自學例題運用規(guī)律

          過渡:同學們展現(xiàn)出了強大的學習能力,在接下來的學習中,老師希望你們能夠自主學習課本96頁的例2,并完成相應的練習,F(xiàn)在開始自主學習吧!祝你們學習順利!

          生自學

          集體評議:例2練一練1和2,請說說你的根據(jù)和想法!重點讓學生說說根據(jù)什么,分母、分子是如何變化的。

          四、多層練習鞏固深化

          1、判斷對錯并說明理由

          2/9=8/36,4/9=2/3,3/4=3a/4a,5/10=3/6,1/5=4/8

          2、把6/20,70/100,45/50,1/2,4/5化成分母相同而大小不變的分數(shù)

          思考:分數(shù)的分母相同,能有什么作用?

          3、圈分數(shù)游戲圈出與1/2相等的分數(shù)

          4、對對碰與1/2,2/3,3/4生生組組師生互動

          五、課堂小結課堂作業(yè)

          結語:你看,運用數(shù)學知識玩游戲,也是樂趣無窮。這節(jié)課我們就上到這兒,作業(yè):余下來的時間請完成課本97頁練習十八的1-3題,做在書上。

        《分數(shù)的基本性質》教學設計10

          教學內容:人教版新課標教科書小學數(shù)學第十冊75~77頁例

          1、例2.教學目標:1知識與技能目標:

         。1)經歷探索分數(shù)的基本性質的過程,理解分數(shù)的基本性質。

          (2)能運用分數(shù)的基本性質,把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)。

          2、過程與方法目標:

         。1)經歷觀察、操作和討論等學習活動,并在探索過程中,能進行有條理的思考,能對分數(shù)的基本性質做出簡要的、合理的說明。(2)培養(yǎng)學生的觀察、比較、歸納、總結概括能力。

         。3)能根據(jù)解決的需要,收集有用的信息進行歸納,發(fā)展學生歸納、推理能力。

          3、情感態(tài)度與價值觀目標:

          (1)經歷觀察、操作和討論等數(shù)學學習活動,使學生進一步體驗數(shù)學學習的樂趣。(2)鼓勵學生敢于發(fā)現(xiàn)問題,培養(yǎng)學生敢于解決問題的學習品質。

          教學重點:探索、發(fā)現(xiàn)和掌握分數(shù)的基本性質,并能運用分數(shù)的基本性質解決問題。教學難點:自主探究、歸納概括分數(shù)的基本性質。教學準備:學生準備一張正方形的紙,課件教學過程:

          一、故事導入。

          師:同學們,你們喜歡看《喜羊羊與灰太狼》的動畫片嗎?生:喜歡。

          師:老師這里有一個慢羊羊分餅的故事,羊村的小羊最喜歡吃村長做得餅。一天,村子做了三塊大小一樣的餅分給小羊們吃,他把第一塊餅的1/2分給懶羊羊,再把二塊餅的2/4分給喜羊羊,最后把第三塊餅的4/8分給美羊羊,懶羊羊不高興地說:"村長不公平,他們的多,我的少!保◣熯呎f邊板書分數(shù))同學們,村長公平嗎?他們那個多,那個少?

          生:公平,其實他們分得一樣多。

          師:到底你們的猜想是否正確呢?讓我們來驗證一下!

          二、探究新知,解決問題:1、小組合作,驗證猜想:(1)玩一玩,比一比.(讀要求)師:我們現(xiàn)在小組合作來玩一玩,比一比.(出示要求)

          師:(讀要求)現(xiàn)在開始.(學生匯報)師:你們發(fā)現(xiàn)了什么?

          生1:老師,我們通過比較這三幅圖的陰影部分完全重合,那這三個分數(shù)都相等。(師在分數(shù)上畫符號)

          生2:老師,我們通過比較這三幅圖的陰影部分完全重合,那這三個分數(shù)都相等。(出示課件演示)

         。、初步概括分數(shù)的基本性質.(2)算一算,找一找.師:(提問)同學們觀察一下,這三個分母什么變了?什么沒變?生1:它們的分子和分母變化了,但分數(shù)的大小沒變。生2:它們的分子和分母變化了,但分數(shù)的大小沒變。

          師:這三個分數(shù)的分子和分母都不相同,為什么分數(shù)的大小都相等呢?同學們思考一下。

          生1:它們的分子和分母都乘相同的數(shù)。生2:它們的分子和分母都除以相同的數(shù)。

          師:那同學們的猜想是否正確呢?它們的變化規(guī)律又是怎樣呢?我們小組合作觀察討論。并把發(fā)現(xiàn)的規(guī)律寫下來。

          (出示課件)

          小組匯報:(歸納規(guī)律)

          師:哪一組把你們討論的結果匯報一下,從左往右觀察,你們發(fā)現(xiàn)了什么?生1:從左往右觀察,我們發(fā)現(xiàn)1/2的分子和分母同時乘2,分數(shù)的大小不變。生2:從左往右觀察,我們發(fā)現(xiàn)1/2的分子和分母同時除以4,分數(shù)的大小不變。師:你們是這樣想的,既然這樣,那么分子和分母同時乘5,分數(shù)的的大小改變,嗎?生:不變。

          師:同時乘

          6.8呢?生:不變。

          師:那你們能不能根據(jù)這個式子來總結一下規(guī)律呢?

          生1:一個分數(shù)的分子和分母同時乘相同的數(shù),分數(shù)的大小不變。生2:一個分數(shù)的分子和分母同時乘相同的數(shù),分數(shù)的大小不變。師:(板書)誰來舉這樣一個例子?生:......

          師:這樣的例子,我們可以舉很多,剛才我們是從左往右觀察,從右往左觀察,哪一組匯報一下。

          生:從右往左觀察,我們發(fā)現(xiàn)了,4/8的分子和分母同時除以2,得到了2/4,分數(shù)2/4的分子和分母同時除以2得到分數(shù)1/2,他們的分數(shù)的大小不變。

          生:從右往左觀察,我們發(fā)現(xiàn)了,4/8的分子和分母同時除以2,得到了2/4,分數(shù)2/4的分子和分母同時除以2得到分數(shù)1/2,他們的分數(shù)的大小不變。(師課件演示)

          師:你們是這樣想的,既然這樣,那么分子和分母同時除以5,分數(shù)的的大小改變,嗎?生:不變。

          師:同時除以

          6.8呢?生:不變。

          師:那你們能不能根據(jù)這個式子來總結一下規(guī)律呢?

          生1:一個分數(shù)的分子和分母同時除以相同的數(shù),分數(shù)的大小不變。生2:一個分數(shù)的分子和分母同時除以相同的數(shù),分數(shù)的大小不變。師:(板書)誰來舉這樣一個例子?生舉例

         。场娬{規(guī)律

          師:我把兩句話合成了一句話,根據(jù)分數(shù)的這一變化規(guī)律,你認為下面的式子對嗎?(課件出示)

          生:回答,錯的,因為分數(shù)的分子、分母沒有乘相同的`數(shù)。師:(在黑板上圈出)對必須乘相同的數(shù)。

          生:錯,因為分子乘2,分母沒有乘2,分子和分母沒有同時乘。師:(在黑板上圈出)對必須同時乘。

          師:分數(shù)的分子、分母都乘或除以相同的數(shù),分數(shù)的大小不變,這里“相同的數(shù)”是不是任何數(shù)都可以呢?我們看一看(課件出示)師:這個式子成立嗎?

          生:不成立,因為0不能做除數(shù),4乘0得0是分母,分母相當于除數(shù),所以這個式子是錯誤的。

          師:我不乘0,我除以0可以么?生:不成立,因為0不能作除數(shù)。

          師:同學們不錯,這兩個式子都不成立,我們剛才總結的分子、分母同時乘或除以相同的數(shù),這相同的數(shù)必須(生:0除外)(師板書)

          師:這一變化規(guī)律就是我們這節(jié)課學習的內容,分數(shù)的基本性質,(板書課題)在這一規(guī)律里,需要我們注意的是:(生:同時、相同的數(shù)、0除外)

          師:我相信懶羊羊學習了分數(shù)的基本性質,那就不會生氣了它知道(出示課件)一樣多,咱們同學們千萬不要犯它同樣的錯誤了,我們把這一條規(guī)律讀兩遍,并記下它。(生讀規(guī)律)

          師:學習了分數(shù)的基本性質,我想利用你們的火眼金睛,當一當小法官(出示課件)

          生:(讀題,用手勢表示對、錯,并說出原因)

          三、運用規(guī)律,自學例題1、學習例2師:這個分數(shù)的基本性質特別的有用,我們可以根據(jù)分數(shù)的基本性質把一個分數(shù)化成和它相等的另外一個分數(shù),我們一起去看一看。(課件出示例題)學生讀題

          師:分子、分母應該怎樣變化?變化的依據(jù)是什么?小組內討論一下(學生討論)師:誰來說一說?

          生:2/3的分子分母同時乘4得到8/12,變化的依據(jù)是分數(shù)的基本性質。生:10/24的分子和分母同時除以2,得到5/12,變化的依據(jù)是分數(shù)的基本性質。師:回答得不錯,自己獨立完成這題。

          師:(巡視)請一名學生說出答案,(生說,師出示答案)

          四、分數(shù)的基本性質與商不變的性質

          師:分數(shù)的基本性質作用可大了,那大家回想一下,這與我們以前學習的除法里面哪一個性質相似?生:商不變的性質。

          師:除法里商不變的性質是怎么說的?

          生:被除數(shù)和除數(shù)同時擴大或縮小相同的倍數(shù)(0除外),商不變。師:你們能否用商不變的性質來說明分數(shù)的基本性質?小組內討論一下。

          小組討論

          師:哪一組把討論的結果匯報一下。

          生:在分數(shù)里,被除數(shù)相當于分子,除數(shù)相當與分母,被除數(shù)與除數(shù)同時擴大或縮小相同的倍數(shù),就相當于分子、分母同時乘或除以相同的數(shù)(0除外),因此,商不變就相當于分數(shù)的大小不變。(師板書)

          師:既然能用商不變的性質來說一說分數(shù)的基本性質,那我們來小試牛刀。(出示課件)

          生:5除以10等于1/2,當被除數(shù)5縮小5倍就相當于分子除以5,分子除以5,分母也除以5,所以10除以5得2.生:12除以24等于4/8,當除數(shù)24除以3得8就相當于分母除以3,分母除以3分子也除以3,12除以3得4.五、課堂運用。1、跨欄高手

          師:同學們的回答簡直太棒了,那你們有資格讓老師把你們帶到運動場去當跨欄高手了。(出示課件)

          師:(學生回答三題)同學們這么大的數(shù)一下子就得出結果,有什么秘訣嗎?生:用大數(shù)除以小數(shù),就知道分母、分子擴大了幾倍.2、拓展延伸:

          師:當了跨欄高手,我們的成績非常的好,那我們就到羊村去玩吧,來到羊村,慢羊羊讓大家當村長,解決難題,你們敢接招嗎?生:敢

          師:(出示課件)那我們就要小組為單位,開始玩游戲。小組匯報結果

          六、撿拾碩果

          看到同學們這么自信的回答,老師知道今天大家的收獲不少,說一說這節(jié)課你都收獲了哪些?生說

          師:同學們,表現(xiàn)得太好了,這節(jié)課,老師從你們的身上也學到了許多,謝謝你們,下課!

        《分數(shù)的基本性質》教學設計11

          一、教學目標

          1.經歷探索分數(shù)基本性質的過程,理解分數(shù)的基本性質。

          2.能運用分數(shù)的基本性質,把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)。

          3.經歷觀察、操作和討論等學習活動,體驗數(shù)學學習的樂趣。

          二、教學重、難點

          教學重點是:分數(shù)的基本性質。

          教學難點是:對分數(shù)的基本性質的理解。

          三、教學方法

          采用了動手做一做、觀察、比較、歸納和直觀演示的方法

          四、教學過程

         。ㄒ唬、故事引入,揭示課題

          1.教師講故事。

          猴山上的猴子們最喜歡吃猴王做的香蕉餅了。有一天,猴王做了三塊大小一樣的香蕉餅分給小猴們吃,它先把第一塊餅平均切成四塊,分給猴1一塊。猴2見到說:“太少了,我要兩塊!焙锿蹙桶训诙䦃K餅平均切成八塊,分給猴2兩塊。猴3更貪,它搶著說:“我要三塊,我要三塊!庇谑,猴王又把第三塊餅平均切成十二塊,分給猴3三塊。小朋友們,你知道哪只猴子分得多嗎?

          討論:三只猴子一起分到了三塊大小一樣的香蕉,它們都覺得自己分得的最多。經過仔細觀察和比較,發(fā)現(xiàn)其實每只猴子分得的香蕉數(shù)量都是一樣的。

          引導:聰明的猴王想出了一個聰明的辦法來滿足小猴子們的要求并且公平分配食物。他決定讓每只小猴子依次從一堆食物中取一份,直到食物被取完為止。這樣每只小猴子都有機會先后選擇食物,確保了公平分配。這個方法既滿足了小猴子們的要求,又讓他們學會了合理分享。

          2.組織討論。

         。1)三只猴子分得的餅同樣多,說明它們分得的餅的分數(shù)是相等的。也就是說,三只猴子分得的餅的分數(shù)是14、28和312,它們之間是相等的關系。雖然它們平均分的份數(shù)和表示的份數(shù)不同,但是它們的大小是相等的。

         。2)猴王將三塊大小一樣的餅分給小猴子一部分后,剩下的部分大小是否相等呢?你還能找出另一組相等的分法嗎?通過仔細觀察我們可以發(fā)現(xiàn):2/3=4/6=6/9。

          (3)我們班有40名同學,分成了四組,每組10人。那么第一、二組學生的人數(shù)占全班學生人數(shù)的幾分之幾?請用分數(shù)表示,并簡化分數(shù)。

          3.引入新課:黑板上三組相等的分數(shù)有什么共同的特點?學生回答后板書:

          分數(shù)的分子和分母變化了,分數(shù)的大小不變。

          它們各是按照什么規(guī)律變化的呢?我們今天就來共同研究這個變化規(guī)律。

         。ǘ、比較歸納,揭示規(guī)律

          1.出示思考題。

          比較每組分數(shù)的分子和分母:

          (1)從左往右看,是按照什么規(guī)律變化的?

         。2)從右往左看,又是按照什么規(guī)律變化的?

          讓學生帶著上面的思考題,看一看,想一想,議一議,再翻開教科書看看書上是怎么說的。

          2.集體討論,歸納性質。

          (1)從左往右看,由34到68,分子、分母是怎么變化的?引導學生回答出:把34的分子、分母都乘以2,就得到68。原來把單位“1”平均分成4份,表示這樣的3份,現(xiàn)在把分的份數(shù)和表示份數(shù)都擴大2倍,就得到68。

          板書:

         。2)34是怎樣變化成912的呢?怎么填?學生回答后填空。

         。3)引導口述:34的分子、分母都乘以2,得到68,分數(shù)的大小不變。

          (4)學生們對幾組分數(shù)進行了觀察,發(fā)現(xiàn)分子和分母的變化規(guī)律是同時乘以相同的數(shù)。經過歸納總結,他們得出結論:分數(shù)的分子和分母都乘以相同的數(shù),分數(shù)的大小不變。

         。ò鍟憾汲艘

          相同的數(shù))

          (5)分數(shù)的分子和分母之間存在一個共同的因數(shù),當分子和分母同時除以這個因數(shù)時,得到的新分數(shù)與原分數(shù)大小相同。

         。ò鍟憾汲裕

         。6)引導思考:都乘以、都除以兩個“都”字,去掉一個怎么改?(去掉第二個“都”字,換成“或者”)再對照教科書中的分數(shù)基本性質,讓學生說出少了什么?(少了“零除外”)討論:為什么性質中要規(guī)定“零除外”?

         。ò鍟毫愠猓

          (7)齊讀分數(shù)的基本性質。先讓學生找出性質中關鍵的字、詞,如“都”、“相同的數(shù)”、“零除外”等。然后要求關鍵的字詞要重讀。師生共同讀出黑板上板書的分數(shù)基本性質。

          3.出示例2:把12和1024化成分母是12而大小不變的分數(shù)。

          思考:要把12和1024化成分母是12而大小不變的分數(shù),分子、分母怎么變化?變化的依據(jù)是什么?

          4.討論:猴王運用什么規(guī)律來分餅的?如果小猴子要四塊,猴王怎么分才公平呢?如果要五塊呢?

          5.質疑:讓學生看看課本和板書,回顧剛才學習的過程,提出疑問和見解,師生答疑。

         。ㄈ、溝通說明,揭示聯(lián)系

          通過舉例,分數(shù)的基本性質與商不變性質之間有密切的聯(lián)系。在分數(shù)中,分子和分母之間存在著除數(shù)與商的關系,分子除以分母就得到分數(shù)的值。當我們進行分數(shù)的乘除運算時,商不變性質起著重要作用。商不變性質指的是在乘除運算中,如果被乘數(shù)或被除數(shù)同時乘(除)以(除以)一個相同的數(shù),那么乘積(商)不變。舉例來說,如果我們有一個分數(shù)$frac{a}$,其中$a$和$b$分別是整數(shù),那么當我們將分子和分母同時乘以相同的.數(shù)$c$,得到的新分數(shù)為$frac{ac}{bc}$。根據(jù)商不變性質,這兩個分數(shù)是等價的,即它們代表同一個數(shù)值。這說明分數(shù)的基本性質中的分子和分母可以同時乘以一個相同的數(shù),不改變分數(shù)的值。因此,分數(shù)的基本性質與商不變性質共同構成了分數(shù)運算中的重要規(guī)律。在進行分數(shù)的乘除運算時,我們可以利用商不變性質來簡化計算,保證結果的準確性。

          如:34=3÷4=(3×3)÷(4×3)=9÷12=912

         。ㄋ模、多層練習,鞏固深化

          1.口答。(學生口答后,要求說出是怎樣想的?)

          2.判斷對錯,并說明理由。(運用反饋片判斷,錯的要求說明與分數(shù)的基本性質中哪幾個字不相符。)

          教學反思:

          學生是學習的主體,教師是引導和組織學習的助手。在數(shù)學課堂上,教師的作用是激發(fā)學生的學習興趣,引導他們積極參與到數(shù)學學習中來。為了實現(xiàn)這一目標,教師需要深入了解學習方法,建立起一種以探究為核心的學習模式。教師應該激發(fā)學生的學習動力,為他們創(chuàng)造充分的學習機會,幫助他們通過自主觀察、討論、合作、探究來真正理解和掌握數(shù)學知識和技能,充分發(fā)揮學生的主動性和創(chuàng)造性。一個重要的特點是設計學習方法,從大膽猜想、實驗感知、觀察討論到總結歸納,都是為了促進學生自主探究和合作學習而設計的。

          1、學生在故事情境中大膽猜想。

          通過創(chuàng)設“猴王分餅”的故事,讓學生猜測一組三個分數(shù)的大小關系,為自主探索研究“分數(shù)的基本性質”作必要的鋪墊,同時又很好地激發(fā)了學生的學習熱情。

          2、學生在自主探索中科學驗證。

          在學生大膽猜想的基礎上,教師適時揭示猜想內容,并對學生的猜想提出質疑,激發(fā)學生主動探究的欲望。在探索“分數(shù)的基本性質”和驗證性質時,通過創(chuàng)設自主探索、合作互助的學習方式,由學生自行選擇用以探究的學習材料和參與研究的學習伙伴,充分尊重學生個人的思維特性,在具有較為寬泛的時空的自主探索中,鼓勵學生用自己的方式來證明自己猜想結論的正確性,突現(xiàn)出課堂教學以學生為本的特性。整個教學過程以“猜想——驗證——完善”為主線,每一步教學,都強調學生自主參與,通過規(guī)律讓學生自主發(fā)現(xiàn)、方法讓學生自主尋找、思路讓學生自主探索,問題讓學生自主解決,使學生獲得成功的體驗,增強自信心。

          3、讓學生在分層練習中鞏固深化。

          在練習的設計上,我們需要確保題目緊扣重點,設計新穎、多樣,難度層次遞進。首先,前兩題作為基礎練習,旨在幫助學生理解概念,全面了解他們對新知識的掌握情況。第三題則是在前兩題基礎上,鞏固練習,加深對所學知識的理解。最后一題通過游戲形式,旨在加深學生對分數(shù)基本性質的認識,激發(fā)學生學習興趣,活躍課堂氣氛。這樣設計不僅能照顧到學生的思維發(fā)展過程,同時也能拓寬學生的思維空間,真正做到學以致用。

          在教學過程中,我們應該注重引導學生進行多種方法的驗證,而不僅僅局限于老師提供的幾種方法。數(shù)學教學的目的不是僅僅教會學生問題的答案,更重要的是教會他們思考問題的方法和途徑。因此,當讓學生驗證結論的正確性時,應該給予他們更大的自由度,讓他們自己去尋找多種途徑進行驗證。這樣不僅可以激發(fā)學生的求知欲和探索欲,也有助于培養(yǎng)他們的創(chuàng)新能力和解決問題的能力。

        《分數(shù)的基本性質》教學設計12

          一、教學目標

          1.經歷探索分數(shù)基本性質的過程,理解分數(shù)的基本性質。

          2.能運用分數(shù)的基本性質,把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)。

          3.經歷觀察、操作和討論等學習活動,體驗數(shù)學學習的樂趣。

          二、 教學重、難點

          教學重點是:分數(shù)的基本性質。

          教學難點是:對分數(shù)的基本性質的理解。

          三、教學方法

          采用了動手做一做、觀察、比較、歸納和直觀演示的方法

          四、教學過程

         。ㄒ唬、故事引入,揭示課題

          1.教師講故事。

          猴山上的猴子最喜歡吃猴王做的餅了。有一天,猴王做了三塊大小一樣的餅分給小猴們吃,它先把第一塊餅平均切成四塊,分給猴1一塊。猴2見到說:“太少了,我要兩塊!焙锿蹙桶训诙䦃K餅平均切成八塊,分給猴2兩塊。猴3更貪,它搶著說:“我要三塊,我要三塊!庇谑,猴王又把第三塊餅平均切成十二塊,分給猴3三塊。小朋友,你知道哪只猴子分得多嗎?

          討論:哪只猴子分得的多?讓學生發(fā)表自己的意見,教師出示三塊大小一樣的餅,通過師生分餅、觀察和驗證,得出結論:三只猴子分得的餅一樣多。

          引導:聰明的猴王是用什么辦法來滿足小猴子們的要求,又分得那么公平的呢?同學們想知道嗎?學習了“分數(shù)的基本性質”就清楚了。(板書課題)

          2.組織討論。

          (1)既然三只猴子分得的餅同樣多,那么表示它們分得餅的分數(shù)是什么關系呢?這三個分數(shù)什么變了,什么沒有變?讓學生小組討論后答出:這三個分數(shù)是相等關系,14=28=312,它們平均分的份數(shù)和表示的份數(shù)也就是分數(shù)的分子和分母變化了,但分數(shù)的大小不變。

         。2)猴王把三塊大小一樣的餅分給小猴子一部分后,剩下的部分大小相等嗎?你還能說出一組相等的分數(shù)嗎?通過觀察演示得出:34=68=912。

         。3)我們班有40名同學,分成了四組,每組10人。那么第一、二組學生的人數(shù)占全班學生人數(shù)的幾分之幾?引導學生用不同的'分數(shù)表示,然后得出:12=24=20xx。

          3.引入新課:黑板上三組相等的分數(shù)有什么共同的特點?學生回答后板書:

          分數(shù)的分子和分母變化了,

          分數(shù)的大小不變。

          它們各是按照什么規(guī)律變化的呢?我們今天就來共同研究這個變化規(guī)律。

         。 二)、比較歸納,揭示規(guī)律

          1.出示思考題。

          比較每組分數(shù)的分子和分母:

          (1)從左往右看,是按照什么規(guī)律變化的?

          (2)從右往左看,又是按照什么規(guī)律變化的?

          讓學生帶著上面的思考題,看一看,想一想,議一議,再翻開教科書看看書上是怎么說的。

          2.集體討論,歸納性質。

         。1)從左往右看,由34到68,分子、分母是怎么變化的?引導學生回答出:把34的分子、分母都乘以2,就得到68。原來把單位“1”平均分成4份,表示這樣的3份,現(xiàn)在把分的份數(shù)和表示份數(shù)都擴大2倍,就得到68。

          板書:

         。2)34是怎樣變化成912的呢? 怎么填?學生回答后填空。

         。3)引導口述:34的分子、分母都乘以2,得到68,分數(shù)的大小不變。

         。4)在其它幾組分數(shù)中,分子、分母的變化規(guī)律怎樣?幾名學生回答后,要求學生試著歸納變化規(guī)律:分數(shù)的分子和分母都乘以相同的數(shù),分數(shù)的大小不變。

         。ò鍟憾汲艘

          相同的數(shù))

         。5)從右往左看,分數(shù)的分子和分母又是按照什么規(guī)律變化的?通過分析比較每組分數(shù)的分子和分母,得出:分數(shù)的分子和分母都除以相同的數(shù),分數(shù)的大小不變。

         。ò鍟憾汲裕

         。6)引導思考:都乘以、都除以兩個“都”字,去掉一個怎么改?(去掉第二個“都”字,換成“或者”)再對照教科書中的分數(shù)基本性質,讓學生說出少了什么?(少了“零除外”)討論:為什么性質中要規(guī)定“零除外”?

         。ò鍟毫愠猓

          (7)齊讀分數(shù)的基本性質。先讓學生找出性質中關鍵的字、詞,如“都”、“相同的數(shù)”、“零除外”等。然后要求關鍵的字詞要重讀。師生共同讀出黑板上板書的分數(shù)基本性質。

          3.出示例2:把12和1024化成分母是12而大小不變的分數(shù)。

          思考:要把12和1024化成分母是12而大小不變的分數(shù),分子、分母怎么變化?變化的依據(jù)是什么?

          4.討論:猴王運用什么規(guī)律來分餅的?如果小猴子要四塊,猴王怎么分才公平呢?如果要五塊呢?

          5.質疑:讓學生看看課本和板書,回顧剛才學習的過程,提出疑問和見解,師生答疑。

         。 三)、溝通說明,揭示聯(lián)系

          通過舉例,溝通分數(shù)的基本性質與商不變性質之間的聯(lián)系。引導學生運用分數(shù)與除數(shù)的關系,以及整數(shù)除法中商不變的性質,說明分數(shù)的基本性質。

          如:34=3÷4=(3×3)÷(4×3)=9÷12=912

          ( 四)、多層練習,鞏固深化

          1.口答。(學生口答后,要求說出是怎樣想的?)

          2.判斷對錯,并說明理由。(運用反饋片判斷,錯的要求說明與分數(shù)的基本性質中哪幾個字不相符。)

          教學反思:

          學生是學習的主人,教師是數(shù)學學習的組織者、引導者與合作者。因此數(shù)學課堂教學中必須把教師的教變成學生的學,必須深入研究學法,建立探究式的學習模式。教師應調動學生的學習積極性,向學生提供充分從事數(shù)學學習的機會,幫助他們在自主觀察、討論、合作、探究學習中真正理解和掌握基本的數(shù)學知識和技能,充分發(fā)揮學生的能動性和創(chuàng)造性!斗謹(shù)的基本性質》的教學設計一個突出的特點就是學法的設計,從大膽猜想、實驗感知、觀察討論到概括總結,完全是為學生自主探究、合作交流的學習而設計的。具體表現(xiàn)在:

          1、學生在故事情境中大膽猜想。

          通過創(chuàng)設“猴王分餅”的故事,讓學生猜測一組三個分數(shù)的大小關系,為自主探索研究“分數(shù)的基本性質”作必要的鋪墊,同時又很好地激發(fā)了學生的學習熱情。

          2、學生在自主探索中科學驗證。

          在學生大膽猜想的基礎上,教師適時揭示猜想內容,并對學生的猜想提出質疑,激發(fā)學生主動探究的欲望。在探索“分數(shù)的基本性質”和驗證性質時,通過創(chuàng)設自主探索、合作互助的學習方式,由學生自行選擇用以探究的學習材料和參與研究的學習伙伴,充分尊重學生個人的思維特性,在具有較為寬泛的時空的自主探索中,鼓勵學生用自己的方式來證明自己猜想結論的正確性,突現(xiàn)出課堂教學以學生為本的特性。整個教學過程以“猜想——驗證——完善”為主線,每一步教學,都強調學生自主參與,通過規(guī)律讓學生自主發(fā)現(xiàn)、方法讓學生自主尋找、思路讓學生自主探索,問題讓學生自主解決,使學生獲得成功的體驗,增強自信心。

          3、讓學生在分層練習中鞏固深化。

          在練習的設計上,力求緊扣重點,做到新穎、多樣、層次分明,有坡度。第1、2題是基本練習,主要是幫助學生理解概念,并全面了解學生掌握新知識的情況。第3題是在第1、2題的基礎上,進一步讓學生進行鞏固練習,加深對所學知識的理解。第4題通過游戲,加深學生對分數(shù)的基本性質的認識,激發(fā)學生學習的興趣,活躍課堂氣氛。這樣不僅能照顧到學生思維發(fā)展的過程,而且有效拓寬了學生的思維空間,真正做到了學以致用。

          反思教學的主要過程,覺得在讓學生用各種方法驗證結論的正確性的時候,拓展得不夠,要放開手讓學生尋找多種途徑去驗證,而不能局限于老師提供的幾種方法。因為數(shù)學教學并不是要求教師教給學生問題的答案,而是教給學生思維的方法。

        《分數(shù)的基本性質》教學設計13

          一、教學目標

          1、使學生理解和掌握分數(shù)的基本性質,能應用分數(shù)的基本性質把一個分數(shù)化成指定分母而大小不變的分數(shù)。

          2、學生通過觀察、比較、發(fā)現(xiàn)、歸納、應用等過程,經歷探究分數(shù)的基本性質的過程,初步學習歸納概括的方法。

          3、激發(fā)學生積極主動的情感狀態(tài),體驗互相合作的樂趣。

          二、教學重點

          1、理解、掌握分數(shù)的基本性質,能正確應用分數(shù)的基本性質。

          2、自主探究出分數(shù)的基本性質。

          三、教學準備

          課件、正方形的紙

          四、教學設計過程

          (一)遷移舊知.提出猜想

          1、回憶舊知

          根據(jù)“288÷24=12”填空

          28.8÷2.4=

          2880÷240=

          2.88÷0.24=

          0.288÷()=12

          被除數(shù)÷除數(shù)=()

          說一說你是根據(jù)什么算的?引導學生回憶商不變的性質?媒體出示:商不變的'性質:

          被除數(shù)和除數(shù)同時乘或除以相同的數(shù)(零除外),商不變。

          2、提出猜想

          既然分數(shù)與除法的關系這么緊密.除法有商不變性質,那分數(shù)是否也會有這樣的性質,請大家大膽猜想一下。(學生可能根據(jù)商不變性質推導出分數(shù)的基本性質,學生匯報后投影出示:分數(shù)的分子和分母同時乘或除以相同的數(shù)(零除外),分數(shù)的大小不變。)

          (二)驗證猜想,建構新知

          1、你有什么辦法來驗證自己的猜想?(折一折、分一分、涂一涂等方法。)

          2、出示學習提示。

          學習提示

          A、同桌合作,借助手中的學具,選擇喜歡的方法,驗證自己的猜想。

          B、驗證結束后,把你的驗證方法和結論與小組同學交流。

          3、匯報交流

          指名3到4名同學到講臺前與全班同學交流自己的驗證方法和過程,教師相機板書。

          C、總結規(guī)律

          1、師:請同學們看黑板上的兩組分數(shù),說說它們的分子和分母分別是按什么規(guī)律變化的。指名回答,教師板書。

          2、總結:對于任何一個分數(shù),只要滿足:分數(shù)的分子和分母同時乘或除以相同的數(shù),分數(shù)的大小就不會發(fā)生變化。

          3、強調0除外。哪位同學將分數(shù)的分子和分母同時乘或除以0進行驗證的?

          如果有,問他是否驗證出猜想,驗證過程中出現(xiàn)了什么問題,如果沒有,肯定他們的做法是對的,從而出示完整的規(guī)律:分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。

          師:為什么要0除外?

          師:對于這句話,你是怎么理解的?(讓學生互相討論,并進行說明。)

          教師以3/4為例說明分數(shù)的分子和分母同時乘或除以0是沒有意義的。

          師:再次出示分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。這叫做分數(shù)的基本性質。(板書課題)

          D教學例2

          把2/3和10/24都化為分母為12而大小不變的分數(shù)。

          學生獨立完成,集體訂正。

          (三)練習升華

          1、填空

          2、下面算式對嗎?如果有錯,錯在哪里?

          3、把相等的分數(shù)寫在同一個圈里。

          4、老師給出一個分數(shù),同學們迅速說出和它相等的分數(shù)。

          (四)作業(yè)

          教材59頁第9題。

          (五)思維拓展

          (六)總結延伸

          師:這節(jié)課你有什么收獲?

          六、板書設計

          分數(shù)基本性質

          分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。

        《分數(shù)的基本性質》教學設計14

          教學目標

          1、學生能理解和掌握分數(shù)的基本性質,知道分數(shù)的基本性質與整數(shù)除法中商不變的性質之間的聯(lián)系。

          2、學生能運用分數(shù)的基本性質把一個分數(shù)化成分母不同而大小相等的分數(shù)。

          3、培養(yǎng)學生觀察、比較、抽象概括的邏輯思維能力,滲透“事物之間是相互聯(lián)系的”辯證唯物主義觀點。

          教學重、難點:

          理解分數(shù)基本性質的含義,掌握分數(shù)基本性質的推導過程。運用分數(shù)的基本性質解決實際問題。

          教學過程:

          一、復習舊知,了解學習起點

          二、創(chuàng)設情境,激趣引入

          課件動畫顯示:藍貓、菲菲、霸王龍最喜歡吃淘氣做的餅。有一天淘氣做了3塊大小一樣的餅分給藍貓、菲菲、霸王龍。藍貓說:“我功勞最大,我要吃一大塊。”菲菲說:“我要吃兩塊。”霸王龍搶著說:“我個頭最大,我要吃3塊!碧詺庀肓讼氡銊邮智酗灊M足了他們的要求,并向他們提問:“剛才,我把3個同樣大小的餅,平均分成2份、4份、6份,分別給了你們1塊、2塊、3塊,你們知道誰吃的多嗎?”淘氣的問題,立刻引起了他們的爭論。同學們,你們知道他們誰吃得多嗎?

          三、探究新知,揭示規(guī)律

          1.動手操作,形象感知。

          (1)折。請學生拿出3張同樣大小的圓形紙,把每張圓形紙都看做單位“1”,用手分別平均折成2份、4份、6份。

         。2)畫。在折好的圓形紙上,分別把其中的1份、2份、3份畫上陰影。

         。3)剪。把圓中的陰影部分剪下來。

         。4)比。把剪下的陰影部分重疊,比一比結果怎樣。

          2.觀察比較,探究規(guī)律。

         。1)通過動手操作,誰能說一說動畫片中藍貓、菲菲、霸王龍各吃了一個餅的幾分之幾?(板書。)

         。2)你認為他們誰吃的多?請到講臺上一邊演示一邊講一講。

          學生匯報后,教師用電腦演示。

          把3塊同樣大小的餅分別平均分成2份、4份、6份,依次表示。把平移、重疊,明顯地看出塊餅、塊餅、塊餅大小相等。通過分餅、觀察、驗證得出結論:“藍貓、菲菲、霸王龍分的餅一樣多!

         。3)既然他們3個吃的同樣多,那么、的大小怎樣?我們可以用什么符號把他們連接起來?(板書。)

          (4)聰明的淘氣是用什么辦法既滿足藍貓、菲菲、霸王龍的要求,又分得那么公平呢?這就是我們今天研究的內容“分數(shù)的基本性質”。(板書課題。)

         。5)這3個分數(shù)的.分子、分母都不同,為什么分數(shù)的大小卻相等?你們能找出它們的變化規(guī)律嗎?請同學們4人為一組,討論這幾個問題。(課件出示討論題。)

          討論題:

          ①它們之間有什么關系?它們的什么變了?什么沒有變?

          ②從左往右看,是按照什么規(guī)律變化的?從右往左看,又是按照什么規(guī)律變化的呢?

         。6)學生匯報,師生討論情況。

          師:這3個分數(shù)是相等的關系?梢詫懗桑鼈兊姆肿、分母變了,而分數(shù)的大小沒有變。

          師:從左往右看,由得到,是把的分子、分母都乘以2,也就是把分的份數(shù)和表示的份數(shù)都擴大2倍,就得到。同理的分子、分母都乘以3,就得到,而分數(shù)的大小不變。(板書:都乘以相同的數(shù)。)

          從右往左看,分數(shù)的分子和分母又是按照什么規(guī)律變化的?通過分析,比較,,得出:分數(shù)的分子和分母都除以相同的數(shù),分數(shù)的大小不變。

         。7)抓住焦點,辨中求真。

          的分子、分母能否同時乘以或者除以零呢?圍繞這個問題展開討論、辯論。通過討論、爭辯,使學生認識到“因為分數(shù)的分子、分母都乘以0,則分數(shù)成為”。

        《分數(shù)的基本性質》教學設計15

          教學目標

          1、經歷探索相等分數(shù)的分子、分母變化規(guī)律的過程,使學生理解分數(shù)的基本性質。

          2、能運用分數(shù)的基本性質把一個分數(shù)化成指定分母而大小不變的分數(shù)。

          3、培養(yǎng)學生觀察、分析和抽象概括的能力。

          教學重點

          理解分數(shù)的基本性質

          教學難點

          發(fā)現(xiàn)和歸納分數(shù)的基本性質,并能應用它解決相關的問題。

          教學過程

        一、復習導入

          1、說說下面各分數(shù)的含義、分數(shù)單位及它有幾個這樣的分數(shù)單位。

          2、口算

          120÷30= 40÷5=

          12÷3= 400÷50=

          師:觀察兩組算式,說說你發(fā)現(xiàn)了什么?是我們已經學過的除法的什么性質呢?

          在除法運算中,被除數(shù)和除數(shù)同時乘或除以同一個非零數(shù)時,商不會改變,這就是除法的商不變性質。

          師:除法和分數(shù)有什么關系呢?

          板書課題:分數(shù)的基本性質

          二、新授

          師:阿凡提同學都熟悉吧?今天老師帶來一個有關阿凡提的.數(shù)學小故事,跟同學分享一下:

          有一個農夫爺爺,他有三頭同樣健壯的牛,要分給他的三個兒子。老大分到第一頭牛的一半,老二分到第二頭牛的四分之二,老三分到第三頭牛的八分之四。老二聽了,覺得自己很吃虧,于是三兄弟大吵起來。正巧經過的智者阿凡提問清爭吵原因后,他想了想,然后跟他們說了幾句話。三兄弟聽后恍然大悟,停止了爭吵。

          同學們,你們知道阿凡提跟三兄弟講了什么嗎?

          生自由發(fā)揮。

          師:這里有三張同樣大小的正方形紙,分別代表著地主爺爺家的三塊地。我們一起來看看三兄弟分到的地。你能用分數(shù)來表示嗎?(出示三張紙)

          師:通過觀察,可知,三兄弟分到的地同樣多。那這三個分數(shù)是什么關系呢?

          生:相等

          師:請觀察這三個分數(shù)的分子和分母,它們之間存在一種規(guī)律。經過仔細觀察可以發(fā)現(xiàn),這三個分數(shù)的分子和分母在每個分數(shù)中都是互換位置的。也就是說,第一個分數(shù)的分子和分母交換位置后得到第二個分數(shù),第二個分數(shù)的分子和分母再次交換位置后得到第三個分數(shù)。這種規(guī)律使得這三個分數(shù)的大小相等,但分子和分母各不相同。

          (預設)生1:分子、分母同時擴大2倍。

          生2:分子、分母同時擴大4倍。

          師:那從右往左看呢?

          總結規(guī)律:分數(shù)的基本性質是指分數(shù)中的分子和分母同時乘或除以相同的數(shù)(除數(shù)不能為0),分數(shù)的大小不變。這一性質可以幫助我們簡化分數(shù),使得計算更加方便和簡便。

          師:和除法商不變的性質對比觀察,你有什么發(fā)現(xiàn)?

          三、分數(shù)基本性質的運用

          把和化成分母是12而大小不變的分數(shù)。

          四、鞏固練習

          五、課堂總結

        【《分數(shù)的基本性質》教學設計】相關文章:

        分數(shù)的基本性質教學設計05-30

        【經典】分數(shù)的基本性質教學設計08-31

        分數(shù)的基本性質教學設計08-11

        《分數(shù)的基本性質》教學設計優(yōu)秀05-09

        分數(shù)的基本性質教學設計[推薦]08-31

        人教版分數(shù)的基本性質教學設計09-20

        分數(shù)的基本性質教學設計(推薦)08-31

        分數(shù)的基本性質教學設計15篇06-25

        (優(yōu))分數(shù)的基本性質教學設計15篇08-25

        [精品]分數(shù)的基本性質教學設計15篇08-25